Статьи

Отравление данных (data poisoning)

Отравление данных (data poisoning) — это атака на машинное обучение, во время которой злоумышленник вводит вредоносные данные в обучающий набор для нарушения работы алгоритма обучения и снижения его эффективности.

Некоторые примеры таких атак:

— Внесение шума (Noise Injection): добавление случайных или искаженных данных в обучающий набор.
— Удаление данных (Data Removal): исключение части данных из обучающего набора.
— Вставка ложных объектов (Object Insertion): добавление несуществующих или ложных объектов в обучающий набор. Сюда же входят скрытые надписи, вотермарки, изображения.
— Изменение меток классов (Label Flipping): изменение или искажение разметки классов в обучающем наборе. То есть данные не добавляются, но происходит подмена: например, картинки с кошками подписываются как картинки с собаками и наоборот.

Последствия отравления данных могут быть катастрофическими. Вот несколько примеров.

— Распознавание лиц: злоумышленник может добавить в обучающий набор чужие изображения лиц, взятые из открытых источников. Это может привести к тому, что невиновного человека задержат правоохранительные органы.
— Медицинские данные: подмена истории болезни пациента или результатов анализов в медицинских приложениях. Такая атака может привести к ложному диагнозу.
— Финансовые данные: из-за добавления фальшивых транзакций или ухищрений в финансовые данные человеку могут предъявить необоснованные обвинения в финансовых махинациях. А атака большего масштаба может спровоцировать дестабилизацию рынка.
— Дорожная ситуация (беспилотные автомобили): злоумышленник может добавить деформированные дорожные знаки или маркировку на дорогах в систему распознавания. Это может привести к авариям и несчастным случаям.